Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.096
1.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745150

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


CD11b Antigen , Liver Cirrhosis , Liver Regeneration , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Regeneration/physiology , CD11b Antigen/metabolism , Male , Disease Models, Animal , Liver/pathology , Liver/metabolism , Vascular Endothelial Growth Factor A/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/physiopathology , Concanavalin A , Ligation , Lipopolysaccharides , Interleukin-10/metabolism , Transforming Growth Factor beta/metabolism , Hepatic Stellate Cells/metabolism , Coculture Techniques , Hepatocytes/metabolism , Hepatocytes/pathology , Bile Ducts
2.
PLoS One ; 19(5): e0303265, 2024.
Article En | MEDLINE | ID: mdl-38739590

More than 58 million individuals worldwide are inflicted with chronic HCV. The disease carries a high risk of end stage liver disease, i.e., cirrhosis and hepatocellular carcinoma. Although direct-acting antiviral agents (DAAs) have revolutionized therapy, the emergence of drug-resistant strains has become a growing concern. Conventional cellular models, Huh7 and its derivatives were very permissive to only HCVcc (JFH-1), but not HCV clinical isolates. The lack of suitable host cells had hindered comprehensive research on patient-derived HCV. Here, we established a novel hepatocyte model for HCV culture to host clinically pan-genotype HCV strains. The immortalized hepatocyte-like cell line (imHC) derived from human mesenchymal stem cell carries HCV receptors and essential host factors. The imHC outperformed Huh7 as a host for HCV (JFH-1) and sustained the entire HCV life cycle of pan-genotypic clinical isolates. We analyzed the alteration of host markers (i.e., hepatic markers, cellular innate immune response, and cell apoptosis) in response to HCV infection. The imHC model uncovered the underlying mechanisms governing the action of IFN-α and the activation of sofosbuvir. The insights from HCV-cell culture model hold promise for understanding disease pathogenesis and novel anti-HCV development.


Hepacivirus , Hepatocytes , Humans , Hepatocytes/virology , Hepatocytes/pathology , Hepacivirus/genetics , Hepacivirus/physiology , Antiviral Agents/pharmacology , Sofosbuvir/pharmacology , Cell Line , Virus Replication , Interferon-alpha/pharmacology , Hepatitis C/virology , Apoptosis , Mesenchymal Stem Cells/virology , Mesenchymal Stem Cells/metabolism
3.
Nat Commun ; 15(1): 2869, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693144

Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.


Acyltransferases , Energy Metabolism , Hepatocytes , Induced Pluripotent Stem Cells , Lipase , Lipid Droplets , Liver Cirrhosis, Alcoholic , Mitochondria , Phospholipases A2, Calcium-Independent , Humans , Hepatocytes/metabolism , Hepatocytes/pathology , Induced Pluripotent Stem Cells/metabolism , Lipid Droplets/metabolism , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Liver Cirrhosis, Alcoholic/genetics , Lipase/metabolism , Lipase/genetics , Mitochondria/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Middle Aged , Adult , Oxidative Stress
4.
Aging (Albany NY) ; 16(8): 7217-7248, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38656880

AIM: In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS: Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS: Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE: These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.


Hepatocytes , Liver Failure, Acute , Methyltransferases , Mice, Knockout , Animals , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Failure, Acute/genetics , Liver Failure, Acute/pathology , Liver Failure, Acute/metabolism , Mice , Methyltransferases/genetics , Methyltransferases/metabolism , Liver/pathology , Liver/metabolism
5.
World J Gastroenterol ; 30(14): 1968-1981, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38681120

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.


Disease Progression , Hepatocytes , Necroptosis , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/diagnosis , Humans , Hepatocytes/pathology , Liver/pathology , Ferroptosis , Pyroptosis , Animals , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Liver Neoplasms/diagnosis
6.
BMC Med Genomics ; 17(1): 103, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654290

BACKGROUND: Hepatocellular carcinoma represents a significant global burden in terms of cancer-related mortality, posing a substantial risk to human health. Despite the availability of various treatment modalities, the overall survival rates for patients with hepatocellular carcinoma remain suboptimal. The objective of this study was to explore the potential of novel biomarkers and to establish a novel predictive signature utilizing multiple transcriptome profiles. METHODS: The GSE115469 and CNP0000650 cohorts were utilized for single cell analysis and gene identification. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets were utilized in the development and evaluation of a predictive signature. The expressions of hepatocyte-specific genes were further validated using the GSE135631 cohort. Furthermore, immune infiltration results, immunotherapy response prediction, somatic mutation frequency, tumor mutation burden, and anticancer drug sensitivity were analyzed based on various risk scores. Subsequently, functional enrichment analysis was performed on the differential genes identified in the risk model. Moreover, we investigated the expression of particular genes in chronic liver diseases utilizing datasets GSE135251 and GSE142530. RESULTS: Our findings revealed hepatocyte-specific genes (ADH4, LCAT) with notable alterations during cell maturation and differentiation, leading to the development of a novel predictive signature. The analysis demonstrated the efficacy of the model in predicting outcomes, as evidenced by higher risk scores and poorer prognoses in the high-risk group. Additionally, a nomogram was devised to forecast the survival rates of patients at 1, 3, and 5 years. Our study demonstrated that the predictive model may play a role in modulating the immune microenvironment and impacting the anti-tumor immune response in hepatocellular carcinoma. The high-risk group exhibited a higher frequency of mutations and was more likely to benefit from immunotherapy as a treatment option. Additionally, we confirmed that the downregulation of hepatocyte-specific genes may indicate the progression of hepatocellular carcinoma and aid in the early diagnosis of the disease. CONCLUSION: Our research findings indicate that ADH4 and LCAT are genes that undergo significant changes during the differentiation of hepatocytes into cancer cells. Additionally, we have created a unique predictive signature based on genes specific to hepatocytes.


Carcinoma, Hepatocellular , Hepatocytes , Liver Neoplasms , Single-Cell Analysis , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Biomarkers, Tumor/genetics , Sequence Analysis, RNA , Gene Expression Regulation, Neoplastic , Transcriptome , Gene Expression Profiling , Prognosis , Male
7.
Ecotoxicol Environ Saf ; 277: 116363, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38663190

Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.


Aflatoxin B1 , Extracellular Vesicles , Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Mitophagy , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Aflatoxin B1/toxicity , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Mitophagy/drug effects , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Animals , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Male , Humans , Mice, Inbred C57BL , Signal Transduction/drug effects
8.
Toxicology ; 504: 153804, 2024 May.
Article En | MEDLINE | ID: mdl-38614205

Fifty percent of all acute liver failure (ALF) cases in the United States are due to acetaminophen (APAP) overdose. Assessment of canonical features of liver injury, such as plasma alanine aminotransferase activities are poor predictors of acute liver failure (ALF), suggesting the involvement of additional mechanisms independent of hepatocyte death. Previous work demonstrated a severe overdose of APAP results in impaired regeneration, the induction of senescence by p21, and increased mortality. We hypothesized that a discrete population of p21+ hepatocytes acquired a secretory phenotype that directly impedes liver recovery after a severe APAP overdose. Leveraging in-house human APAP explant liver and publicly available single-nuclei RNAseq data, we identified a subpopulation of p21+ hepatocytes enriched in a unique secretome of factors, such as CXCL14. Spatial transcriptomics in the mouse model of APAP overdose confirmed the presence of a p21+ hepatocyte population that directly surrounded the necrotic areas. In both male and female mice, we found a dose-dependent induction of p21 and persistent circulating levels of the p21-specific constituent, CXCL14, in the plasma after a severe APAP overdose. In parallel experiments, we targeted either the putative senescent hepatocytes with the senolytic drugs, dasatinib and quercetin, or CXCL14 with a neutralizing antibody. We found that targeting CXCL14 greatly enhanced liver recovery after APAP-induced liver injury, while targeting senescent hepatocytes had no effect. These data support the conclusion that the sustained induction of p21 in hepatocytes with persistent CXCL14 secretion are critical mechanistic events leading to ALF in mice and human patients.


Acetaminophen , Chemical and Drug Induced Liver Injury , Chemokines, CXC , Cyclin-Dependent Kinase Inhibitor p21 , Hepatocytes , Mice, Inbred C57BL , Acetaminophen/toxicity , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Male , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Female , Mice , Chemokines, CXC/metabolism , Chemokines, CXC/genetics , Liver Regeneration/drug effects , Drug Overdose , Analgesics, Non-Narcotic/toxicity
9.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622198

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Iron , Lipocalin-2 , Liver Cirrhosis , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Sterol Regulatory Element Binding Protein 1 , Animals , Humans , Male , Mice , Carbon Tetrachloride/pharmacology , Disease Models, Animal , Gene Expression Regulation , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Iron/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Liver Cirrhosis/chemically induced , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
10.
Free Radic Biol Med ; 218: 166-177, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582229

BACKGROUND: Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS: We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS: Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS: We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.


Autophagy , DNA Methylation , Dioxygenases , Disease Models, Animal , Epigenesis, Genetic , Hepatocytes , Non-alcoholic Fatty Liver Disease , Phosphoric Diester Hydrolases , Promoter Regions, Genetic , Pyrophosphatases , Animals , Humans , Male , Mice , Autophagy/genetics , Carbon Tetrachloride/toxicity , Diet, High-Fat/adverse effects , Dioxygenases/genetics , Dioxygenases/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
11.
Free Radic Biol Med ; 219: 163-179, 2024 Jul.
Article En | MEDLINE | ID: mdl-38615890

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is one of the liver illnesses that may be affected by mitophagy, which is the selective removal of damaged mitochondria. RNF31, an E3 ubiquitin ligase, is carcinogenic in many malignancies. However, the influence of RNF31 on mitochondrial homeostasis and NAFLD development remains unknown. METHODS: Oleic-palmitic acid treated hepatocytes and high-fat diet (HFD)-fed mice were established to observe the effect of RNF31 on hepatocyte mitophagy and steatosis. Mitophagy processes were comprehensively assessed by mt-Keima fluorescence imaging, while global changes in hepatic gene expression were measured by RNA-seq. RESULTS: The present study discovered a reduction in RNF31 expression in lipotoxic hepatocytes with mitochondrial dysfunction. The observed decrease in RNF31 expression was associated with reduced mitochondrial membrane potential, disturbed mitophagy, and increased steatosis. Additionally, the findings indicated that RNF31 is a pivotal factor in the initiation of mitophagy and the facilitation of mitochondrial homeostasis, resulting in a decrease in steatosis in lipotoxic hepatocytes. Mechanistically, RNF31 enhanced p53 ubiquitination and subsequent proteasomal degradation. Down-regulation of p53 led to increased expression of the mitophagy receptor protein BCL2 and adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), thereby promoting mitophagy in hepatocytes. Furthermore, it was demonstrated that the transportation of RNF31 via small extracellular vesicles derived from mesenchymal stem cells (referred to as sEV) had a substantial influence on reducing hepatic steatosis and restoring liver function in HFD-fed mice. CONCLUSIONS: The findings highlight RNF31's essential role in the regulation of mitochondrial homeostasis in hepatocytes, emphasizing its potential as a therapeutic target for NAFLD.


Diet, High-Fat , Hepatocytes , Membrane Proteins , Mitophagy , Non-alcoholic Fatty Liver Disease , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Animals , Mitophagy/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Humans , Diet, High-Fat/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Ubiquitination , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Mice, Inbred C57BL , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitochondria/pathology , Mitochondria/genetics
12.
Toxicology ; 504: 153764, 2024 May.
Article En | MEDLINE | ID: mdl-38428665

Hepatotoxicity poses a significant concern in drug design due to the potential liver damage that can be caused by new drugs. Among common manifestations of hepatotoxic damage is lipid accumulation in hepatic tissue, resulting in liver steatosis or phospholipidosis. Carboxylic derivatives are prone to interfere with fatty acid metabolism and cause lipid accumulation in hepatocytes. This study investigates the toxic behaviour of 24 structurally related carboxylic acids in hepatocytes, specifically their ability to cause accumulation of fatty acids and phospholipids. Using high-content screening (HCS) assays, we identified two distinct lipid accumulation patterns. Subsequently, we developed structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR) models to determine relevant molecular substructures and descriptors contributing to these adverse effects. Additionally, we calculated physicochemical properties associated with lipid accumulation in hepatocytes and examined their correlation with our chemical structure characteristics. To assess the applicability of our findings to a wide range of chemical compounds, we employed two external datasets to evaluate the distribution of our QSAR descriptors. Our study highlights the significance of subtle molecular structural variations in triggering hepatotoxicity, such as the presence of nitrogen or the specific arrangement of substitutions within the carbon chain. By employing our comprehensive approach, we pinpointed specific molecules and elucidated their mechanisms of toxicity, thus offering valuable insights to guide future toxicology investigations.


Carboxylic Acids , Hepatocytes , Quantitative Structure-Activity Relationship , Carboxylic Acids/toxicity , Carboxylic Acids/chemistry , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Phospholipids/metabolism , Phospholipids/chemistry , Fatty Acids/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Hep G2 Cells
13.
Cell Mol Biol Lett ; 29(1): 35, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475733

BACKGROUND AND AIMS: Epidemiological evidence suggests that the phenotype of glutathione S-transferase mu 1 (GSTM1), a hepatic high-expressed phase II detoxification enzyme, is closely associated with the incidence of alcohol-related liver disease (ALD). However, whether and how hepatic GSTM1 determines the development of ALD is largely unclear. This study was designed to elucidate the role and potential mechanism(s) of hepatic GSTM1 in the pathological process of ALD. METHODS: GSTM1 was detected in the liver of various ALD mice models and cultured hepatocytes. Liver-specific GSTM1 or/and micro (miR)-743a-3p deficiency mice were generated by adenoassociated virus-8 delivered shRNA, respectively. The potential signal pathways involving in alcohol-regulated GSTM1 and GSTM1-associated ALD were explored via both genetic manipulation and pharmacological approaches. RESULTS: GSTM1 was significantly upregulated in both chronic alcohol-induced mice liver and ethanol-exposed murine primary hepatocytes. Alcohol-reduced miR-743a-3p directly contributed to the upregulation of GSTM1, since liver specific silencing miR-743a-3p enhanced GSTM1 and miR-743a-3p loss protected alcohol-induced liver dysfunctions, which was significantly blocked by GSTM1 knockdown. GSTM1 loss robustly aggravated alcohol-induced hepatic steatosis, oxidative stress, inflammation, and early fibrotic-like changes, which was associated with the activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38. GSTM1 antagonized ASK1 phosphorylation and its downstream JNK/p38 signaling pathway upon chronic alcohol consumption via binding with ASK1. ASK1 blockage significantly rescued hepatic GSTM1 loss-enhanced disorders in alcohol-fed mice liver. CONCLUSIONS: Chronic alcohol consumption-induced upregulation of GSTM1 in the liver provides a feedback protection against hepatic steatosis and liver injury by counteracting ASK1 activation. Down-regulation of miR-743a-3p improves alcohol intake-induced hepatic steatosis and liver injury via direct targeting on GSTM1. The miR-743a-3p-GSTM1 axis functions as an innate protective pathway to defend the early stage of ALD.


Fatty Liver, Alcoholic , Glutathione Transferase , MicroRNAs , Animals , Mice , Glutathione Transferase/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , MicroRNAs/metabolism , Fatty Liver, Alcoholic/metabolism
14.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38315015

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Antiviral Agents , Apoptosis , Gene Expression Regulation, Viral , Hepatitis B Core Antigens , Hepatitis B virus , Hepatocytes , Protein Biosynthesis , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Apoptosis/drug effects , Capsid/chemistry , Capsid/classification , Capsid/drug effects , Capsid/metabolism , Capsid Proteins/metabolism , Hepatitis B/drug therapy , Hepatitis B/immunology , Hepatitis B/metabolism , Hepatitis B/virology , Hepatitis B Core Antigens/biosynthesis , Hepatitis B Core Antigens/metabolism , Hepatitis B e Antigens/metabolism , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/growth & development , Hepatitis B virus/immunology , Hepatitis B virus/metabolism , Hepatitis B virus/pathogenicity , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatocytes/virology , Mice, Inbred C57BL , Mice, SCID , Virus Replication , Cell Line , CD8-Positive T-Lymphocytes/immunology , Antigen Presentation
15.
Front Immunol ; 15: 1336493, 2024.
Article En | MEDLINE | ID: mdl-38352880

Non-alcoholic fatty liver disease (NAFLD) exhibits increased lipid enrichment in hepatocytes. The spectrum of this disease includes stages such as nonalcoholic simple fatty liver (NAFL), nonalcoholic steatohepatitis (NASH), and liver fibrosis. Changes in lifestyle behaviors have been a major factor contributing to the increased cases of NAFLD patients globally. Therefore, it is imperative to explore the pathogenesis of NAFLD, identify therapeutic targets, and develop new strategies to improve the clinical management of the disease. Immunoregulation is a strategy through which the organism recognizes and eliminates antigenic foreign bodies to maintain physiological homeostasis. In this process, multiple factors, including immune cells, signaling molecules, and cytokines, play a role in governing the evolution of NAFLD. This review seeks to encapsulate the advancements in research regarding immune regulation in NAFLD, spanning from underlying mechanisms to practical applications.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Liver Cirrhosis/pathology , Hepatocytes/pathology , Cytokines , Immunomodulation
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167102, 2024 Apr.
Article En | MEDLINE | ID: mdl-38422712

Non-alcoholic steatohepatitis (NASH) is a pathogenic stage of the broader non-alcoholic fatty liver disease (NAFLD). Histological presentation of NASH includes hepatocyte ballooning, macrophage polarization, ductular reaction, and hepatic stellate cell (HSCs) activation. At a cellular level, a heterogenous population of cells such as hepatocytes, macrophages, cholangiocytes, and HSCs undergo dramatic intra-cellular changes in response to extracellular triggers, which are termed "cellular plasticity. This dynamic switch in the cellular structure and function of hepatic parenchymal and non-parenchymal cells and their crosstalk culminates in the perpetuation of inflammation and fibrosis in NASH. This review presents an overview of our current understanding of cellular plasticity in NASH and its molecular mechanisms, along with possible targeting to develop cell-specific NASH therapies.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Cell Plasticity , Hepatocytes/pathology , Kupffer Cells/pathology
17.
Methods Mol Biol ; 2769: 15-25, 2024.
Article En | MEDLINE | ID: mdl-38315386

Diethylnitrosamine (DEN) is a chemical hepatocarcinogenic agent that triggers a large array of oncogenic mutations after a single injection. Initiated hepatocytes subsequently undergo clonal expansion within a proliferative environment, rendering the DEN model a comprehensive carcinogen. In rodent studies, DEN finds extensive utility in experimental liver cancer research, mimicking several aspects of human hepatocellular carcinoma (HCC), including angiogenesis, metabolic reprogramming, immune exhaustion, and the ability to metastasize. Beyond the wealth of scientific insights gleaned from this model, the objective of this chapter is to review morphological, genomic, and immunological characteristics associated to DEN-induced HCC. Furthermore, this chapter provides a detailed procedural guide to effectively induce hepatocarcinogenesis in mice through a single intraperitoneal injection of DEN.


Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Humans , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Diethylnitrosamine/toxicity , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Hepatocytes/pathology , Mice, Inbred C57BL
18.
Eur Rev Med Pharmacol Sci ; 28(3): 1052-1059, 2024 Feb.
Article En | MEDLINE | ID: mdl-38375710

OBJECTIVE: This study delves into the role of N-terminal propeptide type III collagen (PIIINP) in the diagnosis and management of liver pathological changes associated with non-alcoholic steatohepatitis (NASH). PATIENTS AND METHODS: We collected baseline information, pathological data, and serum PIIINP levels of 168 patients diagnosed with non-alcoholic fatty liver disease (NAFLD) via ultrasound imaging in our hospital. Based on the non-alcoholic fatty liver disease activity score (NAS), patients with different NAFLD patterns were divided into a Definite NASH group and a Not/borderline group. Differences in PIIINP levels and pathological features between the two groups were compared and analyzed. The diagnostic value of PIIINP for NASH was evaluated using the receiver operating characteristic (ROC) curve. RESULTS: Patients with NASH exhibited significantly higher values of homeostatic model assessment for insulin resistance (HOMA-IR), fibrosis biomarker fibrosis-4 (FIB-4), aminotransferase-to-platelet ratio index (APRI), and serum PIIINP levels than those classified as Not/borderline. A marked increase in the serum concentrations of PIIINP was observed with the severity of fatty degeneration, lobular inflammation, and hepatocellular ballooning. The AUC of PIIINP for diagnosing definite NASH was 0.766 (95% CI: 0.694, 0.839), APRI was 0.634 (95% CI: 0.549, 0.718), and FIB-4 was 0.621 (95% CI: 0.534, 0.708). The AUC of PIIINP for diagnosing definite NASH was significantly higher than that of APRI and FIB-4 (all p<0.05). Utilizing the predetermined threshold values for diagnostic parameters, the PIIINP measure demonstrated a sensitivity of 71.6% and a specificity of 73.6% in diagnosing definitive NASH when its value exceeded 7.72 ng/dL. This yielded a Youden index of 0.45. Similarly, when the APRI measure exceeded 0.21, it exhibited a sensitivity of 60.5% and a specificity of 63.2%, resulting in a Youden index of 0.24. Moreover, when the FIB-4 index surpassed 0.26, it showed a sensitivity of 46.9% and a specificity of 79.3%, culminating in a Youden index of 0.26. CONCLUSIONS: NASH patients in this study exhibited significantly elevated PIIINP serum levels, which were closely associated with hepatocyte pathological changes. PIIINP demonstrated superior competence in diagnosing NASH than APRI and FIB-4 and thus offers a viable alternative for the clinical diagnosis of NASH.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Collagen Type III , Liver/pathology , Fibrosis , Hepatocytes/pathology , ROC Curve , Biomarkers , Biopsy , Liver Cirrhosis
19.
Chin Med J (Engl) ; 137(2): 190-199, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38184784

BACKGROUND: Acute-on-chronic liver failure (ACLF) is a severe liver disease with complex pathogenesis. Clinical hypoglycemia is common in patients with ACLF and often predicts a worse prognosis. Accumulating evidence suggests that glucose metabolic disturbance, especially gluconeogenesis dysfunction, plays a critical role in the disease progression of ACLF. Lon protease-1 (LONP1) is a novel mediator of energy and glucose metabolism. However, whether gluconeogenesis is a potential mechanism through which LONP1 modulates ACLF remains unknown. METHODS: In this study, we collected liver tissues from ACLF patients, established an ACLF mouse model with carbon tetrachloride (CCl 4 ), lipopolysaccharide (LPS), and D-galactose (D-gal), and constructed an in vitro hypoxia and hyperammonemia-triggered hepatocyte injury model. LONP1 overexpression and knockdown adenovirus were used to assess the protective effect of LONP1 on liver injury and gluconeogenesis regulation. Liver histopathology, biochemical index, mitochondrial morphology, cell viability and apoptosis, and the expression and activity of key gluconeogenic enzymes were detected to explore the underlying protective mechanisms of LONP1 in ACLF. RESULTS: We found that LONP1 and the expressions of gluconeogenic enzymes were downregulated in clinical ACLF liver tissues. Furthermore, LONP1 overexpression remarkably attenuated liver injury, which was characterized by improved liver histopathological lesions and decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in ACLF mice. Moreover, mitochondrial morphology was improved upon overexpression of LONP1. Meanwhile, the expression and activity of the key gluconeogenic enzymes were restored by LONP1 overexpression. Similarly, the hepatoprotective effect was also observed in the hepatocyte injury model, as evidenced by improved cell viability, reduced cell apoptosis, and improved gluconeogenesis level and activity, while LONP1 knockdown worsened liver injury and gluconeogenesis disorders. CONCLUSION: We demonstrated that gluconeogenesis dysfunction exists in ACLF, and LONP1 could ameliorate liver injury and improve gluconeogenic dysfunction, which would provide a promising therapeutic target for patients with ACLF.


Acute-On-Chronic Liver Failure , Protease La , Animals , Humans , Mice , Acute-On-Chronic Liver Failure/pathology , ATP-Dependent Proteases/metabolism , Gluconeogenesis , Hepatocytes/pathology , Liver/metabolism , Mitochondrial Proteins/metabolism , Protease La/metabolism
20.
Arch Gerontol Geriatr ; 120: 105327, 2024 May.
Article En | MEDLINE | ID: mdl-38237377

BACKGROUND: Hepatic steatosis, a lipid disorder characterized by the accumulation of intrahepatic fat, is more prevalent in the elderly population. This study investigates the role of miR-155-5p in the autophagy dysregulation of aging hepatic steatosis. METHODS: We established an aging mouse model in vivo and a hepatocellular senescence model induced by low serum and palmitic acid in vitro. The fluctuations of microRNAs were derived from RNA-seq data and confirmed by qPCR in 4- and 18-month-old mouse liver tissues. Hematoxylin-eosin (H&E) staining observed pathological changes. Markers of senescence, autophagy, and lipolysis genes were analyzed using Western blot and qPCR. Bioinformatics analysis predicted miR-155-5p's target gene PICALM, confirmed by dual luciferase reporter assay and transfection of miR-155-5p mimic/inhibitor into senescent hepatocytes. RESULTS: Senescent markers (p21, p16, and p-P53) and miR-155-5p were up-regulated in aging liver tissues and senescent hepatocytes. Bioinformatics analysis identified PICALM as a target gene of miR-155-5p, a finding further supported by dual luciferase reporter assays. Inhibition of miR-155-5p reduced expression of senescent marker genes (p16, p21, p-P53), improved autophagy (evidenced by increased LC3B-II and ATG5, and decreased P62), and enhanced lipolysis (indicated by increased ATGL and p-HSL) in senescent hepatocytes. Oil red O staining confirmed that miR-155-5p inhibition significantly reduced lipid accumulation in these cells. CONCLUSIONS: This study suggests a potential new therapeutic approach for age-related hepatic steatosis through the inhibition of miR-155-5p to enhance autophagy.


MicroRNAs , Monomeric Clathrin Assembly Proteins , Aged , Mice , Animals , Humans , Tumor Suppressor Protein p53/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , MicroRNAs/genetics , Aging , Autophagy , Luciferases/metabolism , Lipids , Monomeric Clathrin Assembly Proteins/metabolism
...